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Abstract 
 

The problem of fine-grained classification is one in which traditionally 

humans have fared better than computers. Only recently, with the advent of 

complex Machine Learning techniques, we have seen systems that can compete 

with or beat humans at this problem. In this work, we trained two Convolutional 

Neural Networks (CNNs) on the Stanford Dogs dataset and made them 

recognize dog breeds. We also analyzed the response maps of the CNNs with 

the aim of determining which breed-specific features the networks had learned 

in order to classify the images. Upon obtaining these features, we attempted to 

gain an insight into them for comparison with the human understanding of 

breeds under a Lockean interpretation. 
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1 Introduction 
 
 

Object recognition and classification using convolutional neural networks 

(CNN)s has been the topic of many research projects in recent years. The 

popularity of CNNs can be attributed to the fact that they are capable of 

recognizing and classifying a wide variety of objects and images. A lot of research 

has gone in to the training of CNNs on a variety of datasets, most focusing on 

the optimization of a particular network’s performance. Such research has 

extended into what is known as fine-grained classification tasks. In these 

problems, the dataset used contains classes which can have minor, or few, 

differences between them. Additionally, such datasets may also contain classes 

which vary in a number of different ways, within themselves. Fine-grained 

classification can be useful in a number of ways, such as in the study of botany 

and zoology. In the current age, when nearly everyone carries a high-resolution 

camera in their pockets, such systems could be of great use in recognizing dog 

or other animal breeds, and even plant species from photos taken in real time 

and uploaded as queries. 

In this research, we will be training two CNNs on the Stanford Dogs 

Dataset, using transfer learning (or fine-tuning). However, the focus of this 

research, is to analyze the features used by the two trained CNNs. These 

features will be used to determine what the CNNs have found to be important 

when classifying the images. It will then be determined if these features are 

meaningful, or even humanly understandable. This will be crucial in 

comparing how the CNNs classify these dog breeds, and the way in which 

humans perform the same task. 

The features extracted, the analysis of them, along with the networks 

themselves, will be interpreted through a Lockean understanding of concepts. 

Looking at these networks, from the viewpoint of Locke’s theory of ideas and 

words, we will propose what can be said about this work. We intend to show 

how well this work fits within Locke’s theory of ideas and words. 
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What follows, is an outline of this thesis. Previous research on CNNs and 

dog-breed classification, conducted by other researchers, will be discussed in 

Section 2. We will then discuss artificial neural networks (ANN)s, along with 

CNNs, in detail in Section 3. The proposed method for the experiment will be 

detailed in Section 4. The experiments will be discussed in Section 5. The 

discussion of results, and that of the findings, will follow in Section 6. We will 

provide a philosophical understanding of the experiment’s results in Section 6.4. 

Finally, the Conclusions section will detail the work done in this thesis, as well as 

any future directions for this research. 

 
 

2 Related Work 
 

A substantial amount of research has gone into fine-grained classification 

problems the majority of which has focused on increasing the performance or 

accuracy of the classification by various approaches. Of these works, some have 

approached the problem similar to [3], where image processing is employed at 

the beginning of the process. [3] used the provided annotations of the Stanford 

Dogs dataset, which had locations of bounding boxes that outlined the useful 

information of each image. Specifically, this meant that the information 

pertaining to the dog could be found inside these boxes. Using this, the images 

were all cropped to the bounding boxes, and [3] removed any resulting images 

smaller than 256X256. Once this image preprocessing was completed, [3] used 

LeNet and GoogLeNet architectures. However, [3] noted that transfer learning 

was not used. 

[10] researched fine-grained classification of dog breeds using part 

localization. The method of [10] employed a number of computer vision topics, 

focusing on the use of dog faces to improve accuracy in classifying the various 

breeds. 

[10] found improved performance through the use of their method, however, 

this method requires a good number of steps and [16] aimed to reduce the 
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complexity of this sort of approach. [16] used the Grassmann manifold to 

represent the geometry of dog breeds. Specifically, [16] focused on the geometry 

of dog faces and found that their method performed on par with other, more 

complex, approaches. 

The main take-away here, is that in all these works, the goal was to improve 

performance on a fine-grained classification problem. This is an important issue, 

as discussed in [3], [10], and [16] as it poses a number of problems. Each related 

work discussed here approaches the problem in a slightly different way, however 

the main idea behind their approaches are all the same. Each work focused on 

reducing the amount of information analyzed, hoping to reduce the amount to 

just what is important. Focusing on just what is hoped is the useful information 

in classifying dog breeds. We have elected to go a different direction with our 

research. We have decided not to look into a way for optimizing the networks 

used, instead, we will be investigating what networks find important in classifying 

the breeds in the Stanford Dogs dataset. 

 

3 Background 

 
3.1 Perceptrons 

 
A perceptron is based on the neuron [13], though it should be noted that a 

perceptron is based on a very basic depiction of a neuron. To function, a 

perceptron takes in inputs, multiplies them by weights they have associated with 

each input, and adds to a bias [13]. The results of these are then summed and 

put into an activation function. A very common activation function used by a 

number of networks is the sigmoid function as seen in 1 [15]. This provides the 

output of a perceptron. An example of a perceptron can be seen in figure 1. 

 

 

f (x) = 
1 

 
 

1 + e−x 

 

(1) 
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Training a network with a dataset that contains the correct labels for the 
 
 
 
 

 
 

Fig. 1: Example of a perceptron. 
 
 
 

images is called supervised learning. In supervised learning, a perceptron learns 

by comparing its output to the correct label. The error is calculated by finding 

the difference between the two. A perceptron attempts to reduce its error by 

going back to and updating the weights and biases that most likely caused the 

error. Barring data that is identical, the perceptron does this for the varied data 

that it encounters in training, attempting to find weights and biases that allow it 

to generalize for the entire dataset. From this generalized pattern, a perceptron 

can hopefully make correct predictions on new data. However, a single 

perceptron is only capable of achieving so much. 

 

3.2 Artificial Neural Networks 
 

ANNs were created to help deal with larger amounts of input, and different kinds 

of data. ANNs have multiple perceptrons lined up together, in what is called  
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a layer. The first layer of an ANN is called the input layer. Not much is usually 

done in the input layer, as it mostly just takes in the input so that the next    layers 

can use it. A hidden layer of an ANN is a layer of perceptrons that is anywhere 

in between the input and output layers. These are called hidden layers, because 

you never really see the immediate output they produce. The output layer is the 

final layer of an ANN. This layer provides the output of the entire network. The 

output of this layer is what the network compares to the correct answers when 

training [5]. For a while, research of ANNs was stalled. There were 

 

 

 

 

Fig. 2: Example of a single-layer ANN 
 
 

 
a number of reasons, but one noticeable reason was that the weights and 

biases could not be updated for networks that were bigger than single-layer 

networks. 
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An example of a single-layer network can be seen in figure 2. Single-layer refers 

to the single hidden layer of the network. The issue with this, was that these 

single- layer networks were incapable of accomplishing classification tasks that 

weren’t linear. However, as mathematics, as well as computers, improved, a 

method called back-propagation was developed to train networks that had more 

than one hidden layer. Thus, making it possible for ANNs to work on 

classification tasks that did not fit into a linear model. 

The idea of training ANNs is fairly similar to the training of a 

perceptron. The network attempts to classify an input (i), finds its error by 

comparing its output (yi) to the expected output (yh). Then, going back, the 

network updates its weights (w) and biases (b) using functions seen in 2 and 

3, respectively. The way in which this is carried out, is through back 

propagation [7]. 

 
wnew = wold + (yh − yi) × xi (2) 

 
bnew = bold + (yh − yi) (3) 

 

3.3 Convolutional Neural Networks 
 

 
CNNs are based on a number of concepts within image processing and 

computer vision. As the name suggests, convolution is a major component to 

these neural networks. We will now discuss the various layers of convolutional 

neural networks, and what they are used for. 

 

 
Convolution Layer The convolution (CONV) layer takes matrices, or 

images, which are just matrices of integer values, as input [12]. Then a feature 

matrix, convolves the input image, creating a feature map. There are multiple 

feature matrices, or detectors, in each CONV layer [12]. Additionally, there 

are usually 
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Fig. 3: CONV Example. 
 
 

 
multiple CONV layers in a single network. An example of a simplified 

convolution (showing a single filter) can be seen in figure 3. 

 

 
Rectified Linear Unit Layer The rectified linear unit (ReLU) layer’s main 

purpose is to remove any negative values that result from the CONV layer’s 

feature map. This just takes the CONV layer’s output as its input, and performs 

the rectifier function seen in 4, producing its output [1].  
 

 
 

 
(4)

 

 

Max Pooling Layer Max pooling (MaxPool) layers traverse the input matrices, 

which usually come from a ReLU layer. While traversing the matrices, it looks at 

a portion of each matrix, and creates a smaller matrix with only the maximum 

value for each section [12]. This is done to help prevent over-fitting, as not all 

values can be memorized past the MaxPool layer [12]. Additionally, MaxPool 

helps reduce the computational complexity of a network by reducing the size of 

matrices. Though information is lost in the process, the most important 
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Fig. 4: Example of a 2x2 MaxPool. 
 

 
information is passed through a MaxPool layer [12]. A representation of what 

MaxPool looks like can be seen in figure 4. 

 

 
Fully Connected Layer A fully connected (FC) layer is, essentially, the same 

setup as an ANN [8]. This is usually included at the end of a CNN [8]. Before 

this can work, the result of a ReLU layer is usually put through a MaxPool 

layer to produce a vector. The resulting vector is then used with a fully 

connected layer, which usually includes dropout layer, and a softmax layer for 

a classification task that has more than two classes [8]. 

 

 
Dropout Layer The dropout layer disables half of the perceptrons from the 

previous FC layer [9]. This not only helps prevent over-fitting, but also helps to 

make the network more robust [9]. As the disabled perceptrons are chosen at 

random, no single perceptron can be relied upon every time [9]. The network is 

also less likely to adjust deeper layers for the errors of previous ones [9]. Dropout 

is chosen at random every time, and effectively removes the chosen perceptrons 

from consideration in the following layer [9]. An example of dropout can be seen 

in figure 5. 
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L 

 

 

 
 
 

Fig. 5: Dropout Example. 
 
 

 
Softmax Layer The softmax layer is used for classification tasks that have more 

than two categories, or classes [1]. This layer allows the network to provide a 

percentage, or confidence for each class. In a classification task, the output that 

has the highest confidence, is the output chosen, and corresponds to a particular 

class. We used the softmax layer in our experiments, since our dataset contains 

120 classes. Softmax is the normalized exponential function, and converts a 

vector from their current real values, to real values between 0 and 1, with a sum 

of 1 [1]. The equation can be seen in 5, with x being the input to the softmax 

layer and k being the number of inputs [1]. This is what gives the percentage, or 

confidence for each class [1]. 

 

   k−1 

f (x) = exp(xk)/(∑ exp(xn)) (5) 

n=1 

 

3.4 Fine-Tuning 
 

Fine-tuning is a method for training a neural network that has been previously 

trained on a different dataset [17]. The architecture of the network is kept the 
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same, however, the weights and biases of the last three layers are removed. In 

doing this, the network maintains what has been learned at lower levels, from 

the previous dataset. When training by fine-tuning, the network can be more 

efficiently trained to learn higher-level features of the new dataset. However, if 

training is performed in the normal manner, after replacing the final three layers 

of the network, the weights and biases of the lower level features previously 

learned by the network will be changed as well. To prevent this, all layers, except 

the final three layers, have their weights and biases frozen. 

 
 
 

4 Proposed Method 
 

 
In this work, we decided to analyze VGG-16[14] and Densenet-201[4]. 

MATLAB was used for all of the experiments performed. We wanted to see what 

features these networks focused on after training them with a modified version 

of the Stanford Dogs dataset. To accomplish this, we fine-tuned these networks, 

which were both previously trained on the ImageNet dataset [2]. After fine-

tuning each network, we tested the networks on a test set, constructed a 

confusion matrix, and collected the correctly classified images into a smaller 

dataset, individually for each network. We then had each network classify the 

images in its correctly classified dataset, taking note of the top 20 activations per 

class. Following this, we obtained the frequencies of each activation, across all 

classes, and removed any activations which were present more than 30 times. 

This gave us the most common activations for each class, that were also unique 

to that specific class. Finally, we had each network classify the images in its 

correctly classified dataset, this time retrieving the activations that were noted as 

common to, and unique for each class. We then combined the activations, 

individually, with the original input images, saving them for further analysis. 
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4.1 VGG-16 Structure 

 
VGG-16[14] has a total of 41 layers. The overall structure of VGG-16[14] with 

fine-tuning implemented, can be seen in figure 6. The network takes an image 

of size 224x224x3 as input. The layers of VGG-16[14] can be found in table 1. 

 

 

 

Fig. 6: A schematic representation of VGG-16. 
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Table 1: The structure of VGG-16 used. 

Layer Type Activations 

1 Image Input 224x224x3 

2 Convolution 224x224x64 

3 ReLU 224x224x64 

4 Convolution 224x224x64 

5 ReLU 224x224x64 

6 Max Pooling 112x112x64 

7 Convolution 112x112x128 

8 ReLU 112x112x128 

9 Convolution 112x112x128 

10 ReLU 112x112x128 

11 Max Pooling 56x56x128 

12 Convolution 56x56x256 

13 ReLU 56x56x256 

14 Convolution 56x56x256 

15 ReLU 56x56x256 

16 Convolution 56x56x256 

17 ReLU 56x56x256 

18 Max Pooling 28x28x256 

19 Convolution 28x28x512 

20 ReLU 28x28x512 

21 Convolution 28x28x512 

22 ReLU 28x28x512 

23 Convolution 28x28x512 

24 ReLU 28x28x512 

25 Max Pooling 14x14x512 

26 Convolution 14x14x512 

27 ReLU 14x14x512 

28 Convolution 14x14x512 

29 ReLU 14x14x512 

30 Convolution 14x14x512 

31 ReLU 14x14x512 

32 Max Pooling 7x7x512 

33 Fully Connected 1x1x4096 

34 ReLU 1x1x4096 

35 Dropout 1x1x4096 

36 Fully Connected 1x1x4096 

37 ReLU 1x1x4096 

38 Dropout 1x1x4096 

39 Fully Connected 1x1x120 

40 Softmax 1x1x120 

41 Output – 



13 
 

 

 
 

Fig. 7: A schematic representation of a dense block with five layers [4]. 
 
 
 

 

 

Fig. 8: A schematic representation of DenseNet-201. 
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4.2 DenseNet-201 Structure 
 

 
DenseNet-201 [4] has a total of 201 layers. This network also has an image input 

size of 224x224x3, however, this network has a different connection pattern than 

VGG-16[14]. Instead of being completely sequential, each layer passes its feature 

maps, as input, to all further layers, and each layer takes, as input, each previous 

layer’s feature maps [4]. A schematic representation of an individual dense block, 

taken directly from [4], can be seen in fig. 7, and a schematic representation of 

the full network can be seen in fig. 8. A table describing the full network has 

been omitted from this paper, as it is approximately 709 rows. 

 
 

5 Experiments 
 

 
For each network, the experiments were conducted separately. 

 
 

 
5.1 Dataset 

 

 
We used the Stanford Dogs dataset [6], which contains 120 classes of dog 

breeds. Each class had approximately 150 images for a total of 20580 images. 

Since, such a small dataset can lead to over-fitting, especially with such large 

CNNs, we decided to modify the dataset by converting the images to high-

contrast and adding them to the original dataset. This gave us, approximately 

300 images per class. We then split the dataset into a test set, containing 100 

images per class, and a remaining set, containing approximately 200 images per 

class. Before training, we further divided the remaining set into a validation 

set, containing 30 percent of the remaining set, and a training set, containing 

70 percent of the remaining set. 
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Fig. 9: Sample images from five breeds of our dataset. 
 
 

 
5.2 Training 

 

 
Each network was fine-tuned on the training set, using an image augmenter that 

had a pixel range of -30 to 30. The training consisted of mini-batches of 25, and 

a maximum number of 10 epochs. However, both networks were stopped before 

the maximum number of epochs was reached. The initial learning rate was set at 

3e-4. Validation was conducted following every 50 iterations using the 
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Fig. 10: VGG-16 Training Progress 
 
 

 
validation set. Training data was shuffled after every epoch, and the training 

progress plotted for VGG-16 can be seen in figure 10 and for DenseNet-201 

can be seen in figure 11. 

 
 
 
 

5.3 Testing 
 
 
 
 

Testing each network on the test set, we created a confusion matrix. The rows 

of the confusion matrix signify the correct class, while the columns signify the 

network’s output class. The confusion matrix for VGG-16 in figure 12 and 

DenseNet-201 in figure 13 show a clear diagonal line, demonstrating a good 

performance on the test set. We can tell which classes proved more difficult than 

others, for each network, by looking at the diagonal line on the confusion matrix. 

The class that lines up with a spot that is not red, is a class that the network did 

not perform as well on. 
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Fig. 11: DenseNet-201 
 

 

6 Results 

 
With each network fine-tuned and tested, we analyzed the features of each 

network’s final CONV layer/block, to see what high-level features the network 

had detected when classifying the images. 

 

6.1 Classification 
 

 
Class Name VGG-16 (%) DenseNet-201 (%) 

Affenpinscher 88 94 

Afghan Hound 92 98 

African Hunting Dog 95 100 

Airedale 87 97 

American Staffordshire Terrier 83 77 

Appenzeller 56 72 

Australian Terrier 85 87 

Basenji 92 95 
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Basset 84 94 

Beagle 88 90 

Bedlington Terrier 98 100 

Bernese Mountain Dog 86 96 

Black and Tan Coonhound 84 91 

Blenheim Spaniel 86 99 

Bloodhound 94 98 

Bluetick 94 95 

Border Collie 83 70 

Border Terrier 97 96 

Borzoi 81 95 

Boston Bull 88 90 

Bouvier des Flandres 78 87 

Boxer 81 88 

Brabancon Griffon 90 94 

Briard 78 88 

Brittany Spaniel 77 92 

Bull Mastiff 88 88 

Cairn 90 93 

Cardigan 63 92 

Chesapeake Bay Retriever 78 94 

Chihuahua 78 86 

Chow 95 96 

Clumber 95 98 

Cocker Spaniel 75 90 

Collie 66 74 
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Curly-Coated Retriever 91 94 

Dandie Dinmont 83 98 

Dhole 94 97 

Dingo 83 86 

Doberman 68 98 

English Foxhound 82 73 

English Setter 80 90 

English Springer 94 90 

Entlebucher 82 91 

Eskimo Dog 56 34 

Flat-Coated Retriever 91 95 

French Bulldog 85 98 

German Shepherd 79 91 

German Short-Haired Pointer 93 96 

Giant Schnauzer 92 92 

Golden Retriever 84 94 

Gordon Setter 92 99 

Great Dane 87 89 

Great Pyrenees 81 99 

Greater Swiss Mountain Dog 92 89 

Groenendael 88 96 

Ibizan Hound 94 97 

Irish Setter 81 96 

Irish Terrier 85 83 

Irish Water Spaniel 85 91 

Irish Wolfhound 84 78 
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Italian Greyhound 88 93 

Japanese Spaniel 91 96 

Keeshond 93 98 

Kelpie 73 79 

Kerry Blue Terrier 86 91 

Komondor 95 99 

Kuvasz 84 82 

Labrador Retriever 82 89 

Lakeland Terrier 80 82 

Leonberg 99 100 

Lhasa 83 82 

Malamute 79 78 

Malinois 95 94 

Maltese Dog 79 96 

Mexican Hairless 97 96 

Miniature Pinscher 91 92 

Miniature Poodle 42 73 

Miniature Schnauzer 52 87 

Newfoundland 89 92 

Norfolk Terrier 83 88 

Norwegian Elkhound 93 94 

Norwich Terrier 74 77 

Old English Sheepdog 68 96 

Otterhound 88 88 

Papillon 91 97 

Pekinese 82 91 
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Pembroke 87 88 

Pomeranian 93 96 

Pug 90 99 

Redbone 79 79 

Rhodesian Ridgeback 79 92 

Rottweiler 99 100 

Saint Bernard 99 97 

Saluki 86 97 

Samoyed 85 95 

Schipperke 93 96 

Scotch Terrier 88 95 

Scottish Deerhound 87 98 

Sealyham Terrier 90 96 

Shetland Sheepdog 66 89 

Shih-Tzu 55 81 

Siberian Husky 67 87 

Silky Terrier 68 78 

Soft-Coated Wheaten Terrier 82 93 

Staffordshire Bullterrier 74 81 

Standard Poodle 66 86 

Standard Schnauzer 69 71 

Sussex Spaniel 91 92 

Tibetan Mastiff 78 85 

Tibetan Terrier 85 90 

Toy Poodle 73 75 

Toy Terrier 69 79 
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. 
 

 
 

 

 

 

 

 

Table 2: Class Accuracies for Both Networks 

VGG-16 performed at an overall accuracy of about 82.71 percent, while 

DenseNet-201 performed at an overall accuracy of about 89.33 percent. 

However, this is across all classes, and not representative of how each network 

performed for each class. As we have shown, the diagonal for the confusion 

matrix of both VGG-16 in figure 12 and that of DenseNet-201 in figure 13 are 

not perfect. Therefore, there were classes for which, each network performed 

better than their overall accuracy, as well as those in which they performed 

worse. This can clearly be seen if we look at the class accuracies for each 

network, which can be seen in table 2. 

 
 

6.2 Over-fitting 
 

Over-fitting is an issue that must be addressed when working with a dataset 

of a size similar to the Stanford Dogs dataset. Although there are 20580 

images in the original dataset, those images span 120 classes. This makes for 

the small class size of approximately 150 images. Even if we assume the 

approximate class size, we needed to split the dataset into three smaller 

sets. Further reducing 

Vizsla 77 84 

Walker Hound 52 73 

Weimaraner 91 99 

Welsh Springer Spaniel 73 89 

West Highland White Terrier 78 95 

Whippet 68 92 

Wire-Haired Fox Terrier 70 86 

Yorkshire Terrier 83 89 
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Fig. 12: Confusion Matrix for VGG-16 
 
 

 
the amount of data to train with. This scenario often results in over-fitting. That 

is, when the network stops attempting to find a generalizing pattern, and begins 

to memorize the training images. We wanted to avoid over-fitting, since the 

networks would show good performance on only the training data, since this 

would be what the networks had learned. 

The size of the dataset was not the only concern, as the size of the network 

in relation to the dataset can also determine if over-fitting will occur. With both 

networks being on the larger side, it should be noted that VGG-16 has far fewer 

layers than DenseNet-201. Though over-fitting can be seen in VGG-16 (fig. 10) 

and DenseNet-201 (fig. 11), we can see that DenseNet-201 may be more affected 

by over-fitting than VGG-16. We can see this, because DenseNet-201 reaches 

perfect accuracy on the training set, within the first epoch. However, 
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Fig. 13: Confusion Matrix for DenseNet-201 
 

 
VGG-16 does not approach perfect accuracy on the training set until its third 

epoch of training. This may be a result of a small dataset size, matched with the 

large sizes of these networks. A possibility is that DenseNet-201 is more affected 

by over-fitting, even with our modified version of the Stanford Dogs dataset, 

because of its size with relation to the size of the dataset. As for VGG-16, it is 

still apparently affected by over-fitting, but to a lesser extent, possibly due to the 

smaller size of the network, compared to that of DenseNet-201. 

 
 

6.3 Feature Extraction 
 

Feature extraction was conducted on the final convolution layer of each network, 

using images from the test set which were correctly classified. We had setup the 

initial step for this process, when we tested the networks and created the 
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Fig. 14: Sample output from the feature extraction of our fine-tuned VGG-16. 
 
 
 
 

confusion matrices, by recording all of the top activation used for each breed. 

Once we had that information, we wrote a program to determine the frequencies 

of each activation used across all breeds and removed any activations from our 

records that had a frequency of more than 30. Thus, we removed the activations 

which could be considered common among more than 25% of the breeds. With 

this information, we hoped to find those activations which were common to, at 

the very least, a handful of breeds. Using the activations that remained, we 

combined the images used with the activations, to create visual representations 

of what each activation was recognizing. We then manually analyzed these images 

to gain insight into how the network was distinguishing between the breeds. 

Sample output of our method can be seen in fig. 14 and fig. 15 for our fine-tuned 

VGG-16 and Densenet-201, respectively. 

As can be seen in the figures, there are certain features that these activations 

light up, which correspond to features we would expect to be used when 

classifying dog breeds. For instance, we can say that the legs of the dog are a 

focal point for activation 70 of VGG-16 for the Borzoi class, as well as 

activation 31 
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Fig. 15: Sample output from the feature extraction of our fine-tuned Densenet-

201. 

 
 
 

 
of Densenet-201 for the Siberian Husky class. We can say the same for the nose 

of the dogs (activation 75 of VGG-16 for English Springer and activation 17 of 

Densenet-201 for Blenheim Spaniel), ears of the dogs (activation 46 of VGG-16 

for Malinois and activation 75 of Densenet-201 for German Shepherd), and even 

the faces of the dogs (activation 64 of VGG-16 for Siberian Husky and activation 

83 of Densenet-201 for West Highland White Terrier). However, we did find 

some activations more difficult to interpret than others, including activation 69 

of VGG-16 for English Foxhound and activation 28 of Densenet-201 for 

Chesapeake Bay Retriever. For these, we might be able to say that the activations 

are focused on the color, color patterns, or even the shapes of the breeds. We 

have decided that activation 69 of VGG-16 appears to be more focused on the 

color pattern correlating with the brown and white of the English Foxhound. 

Whereas activation 83 of Densenet-201 appears to be focusing more on the 

shape, possibly strictly the color, of the Chesapeake Bay Retriever. Even though 

these have been troublesome in determining the exact feature the network is 

focusing on, 
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we can say that there appears to be a definite feature that each has learned, in 

distinguishing between the various breeds. 

 
6.4 Discussions 

 
 

 

 
 

 
Fig. 16: Example of incorrectly classified Miniature Poodle as Toy Poodle 

(Example of Toy Poodle on right). 

 
 
 
 

Confusion Examples By looking at the overall accuracies of both networks on 

the test sets, keeping in mind the diagonals found in the confusion matrices, we 

can say that both networks performed well in general. However, as we have noted 

previously, there were certain classes, or breeds, for which each network had 

trouble with. Looking at the accuracies for each class, found in the class 

accuracies table (table 2), we have found that the class which caused the most 

trouble for VGG-16 was the Miniature Poodle. For DenseNet-201, the most 

troublesome class was the Eskimo Dog. Additionally, we determined that the 

class which VGG-16 confused Miniature Poodle images for, was the Toy Poodle 

class. Miniature Poodle images were classified as Toy Poodle 26% of the time 
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Fig. 17: Example of incorrectly classified Eskimo Dog as Siberian Husky 

(Example of Siberian Husky on right). 

 
 

 
by VGG-16. As for DenseNet-201, it classified Eskimo Dog images as Siberian 

Husky 46% of the time. An example of a Miniature Poodle image incorrectly 

classified by VGG-16 as a Toy Poodle can be seen in fig. 16. Included in fig. 

16, is an example image of the Toy Poodle class. In fig. 17, we included an 

example of an Eskimo Dog image which was incorrectly classified by DenseNet-

201 as a Siberian Husky, as well as an example image of the Siberian Husky class. 

Intuitively, these mistakes make sense, as it is difficult to differentiate between 

these classes (or breeds) when only looking at these images. The similarities 

between these classes can easily be seen, as they share a number of 

characteristics. So, we can see why the networks have incorrectly classified 

these images. 

 
 

Philosophical Interpretation To interpret our results, and the networks 

themselves, we will be using Locke’s understanding of concepts, or ideas as he 

calls them. We will also take note of how Locke understands words, what we use 

them for, and what they actually mean. Using this, and taking our networks, 
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and the results as our evidence, we will propose what can be said about this 

work, from the standpoint of a Lockean theory of concepts and words. From 

hereafter, we shall use the term ’idea’ in place of ’concept’, to reduce the need 

for repetition or explanation, as well as to keep consistent with Locke. 

 

In discussing what an idea is, Locke says, “Idea is the object of thinking” [11, 

p. 33]. This meaning that there is something within our thinking which we take 

as the object of our thoughts, and that is what idea is, the things which we think 

about, and use in our thinking. Locke claims that we get our ideas from sensation 

and reflection [11, p. 33]. As such, ideas for Locke, do not come from native 

(innate) ideas, or are not to be considered “stamped” on our minds when they 

are created [11, p. 33]. Rather, ideas come from our experiences, be they 

sensation or reflection [11, p. 33]. We will now look into Locke’s understandings 

of sensation and reflection, as they pertain to ideas. 

 

Sensation is the source of the ideas which come from our senses, according 

to how external objects interact with our senses [11, p. 33]. The senses, “convey 

into the mind,” [11, p. 33] perceptions of the external objects, conveying that 

which produces the perceptions (the external object which interacts with our 

senses) into the mind [11, p. 34]. Put another way, this is a forming of an internal 

representation of the external objects, through our senses. Reflection, on the 

other hand, does not deal with the senses [11, p. 34]. However, reflection can be 

considered the internal equivalent of sensation [11, p. 34]. Locke points out that 

reflection refers to the, “operations of our minds” [11, p. 34]. As such, the ideas 

which come from reflection, are those that come from, “the perception of the 

operations of our own minds within us,” used with the ideas we have [11, p. 34]. 

Locke takes note that there is no comprehensible unconscious thought that we 

can have [11, pp. 36–37]. Additionally, Locke makes it clear that, although he 

does not find there to be innate ideas, our minds have a certain capacity 



30 
 
 

to receive impressions through sensation or reflection [11, p. 39]. Which just 

means that we have the ability, or, it is possible for us, to have the ideas which 

we do. 

 

Continuing on, Locke distinguishes simple ideas from complex ideas. 

Concerning the former, Locke designates these as those ideas that represent, 

“one uniform appearance, or conception in the mind” [11, p. 40]. Simple ideas 

are not formed by any sort of compounding, or combination of ideas, and thus, 

cannot be broken down or separated into any smaller ideas [11, p. 40]. Further, 

looking into ideas, Locke makes clear that our ideas are internal representations 

of external objects, and just that [11, p. 48]. Taking this into consideration, we 

can note that, our ideas are not exact images or, “resemblances of something 

inherent in,” these external objects [11, p. 48]. These internal representations 

have, as Locke notes, a similar relation to the external objects they represent, as 

names have with the ideas they signify [11, p. 48]. Concerning the latter of the 

types of ideas mentioned above, Locke says that they are the combination of 

several simple ideas [11, p. 66]. In addition to creating complex ideas, we can get 

relations between ideas by bringing them together, but not combining them into 

a single idea, as well as, form general ideas by separating them from ideas they 

accompany in, “their real existence” [11, p. 66]. This separating of ideas, which 

brings us to general ideas, is what Locke refers to as abstraction [11, 

p. 66]. Locke also explains that complex ideas are either modes (dependences or 

affections of substances), substances (combinations of simple ideas representing 

distinct things subsisting by themselves), or relations (coming from our 

considering or comparing of two ideas) [11, pp. 67–68]. Understanding the 

basics of Locke’s ideas as such, we move to Locke’s understanding of the 

signification of words. 

 

To begin, Locke mentions that words are sensible signs which we use for 

communicating with others [11, p. 178]. Following this, Locke adds that “Words 
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are the sensible signs of his ideas who uses them” [11, p. 178]. Words, when used 

to communicate, are used to signify the ideas of the speaker, with the intention, 

and hope, of being understood by the listener [11, p. 178]. There are two 

underlying principles, or thoughts, when words are used this way. The first, is 

that the words refer to the same idea in the listener, as they do in the speaker 

[11, p. 179]. The second, is that the words refer to the reality of things [11, 

p. 179]. We hope, 

that when we speak, we can convey our ideas, which are in our mind, to someone 

else, through the use of our words. This being the basis of our communicating. 

We also hope, that what we are talking about, is real, rather than some sort of 

hallucination, or fantasy. Though there are a number of word types, words of 

particular interest for this work are general words, which we will take a look at 

next. 

 
Locke describes general words as the signs of general ideas [11, p. 181]. 

Further developing this, general ideas are formed by the removal of time, place, 

and any idea which distinguishes particular instances [11, p. 181]. Locke 

points out that this removal of ideas is removing, “that which is peculiar to 

each,” and retaining, “only what is common to all” [11, p. 181]. From this, we 

can see that general words signify the sorts of things, or, the essence of a sort 

[11, p. 184]. This essence of a sort, that which makes anything to be of that sort, 

is the general, abstract ideas that the words are taken as signs of [11, p. 184]. 

These general words are formed by our understanding, which abstracts ideas, 

but are also founded in the, “similitude of things” [11, p. 184]. It is these sorts 

(the abstract, general ideas), to which we are capable of comparing particular 

instances of things, to find similarities between, and thus determine if a 

particular instance of a thing belongs to a particular sort [11, p. 184]. It will be 

important to understand what we have been referring to, when referring to 

the essence of a sort. 
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The essence referred to above, has the possibility of two meanings. The first 

is what Locke calls the real essence, or the internal constitution of substances, 

which is unknown to us [11, p. 184]. The second possible meaning, Locke calls 

the nominal essence, or the abstract ideas that a name (general word) of a sort 

signifies [11, p. 184]. As such, the name of a sort signifies the nominal essence 

of the sort, and can only be attributed to things which have that essence [11, 

p. 184]. Locke 

makes clear, that we distinguish sorts by their nominal essence (our abstract, 

general ideas), and not by their unknown real essence [11, p. 186]. For simple 

ideas and modes, Locke notes that the real and nominal essences are the same 

[11, p. 186]. However, substances are unlike simple ideas and modes in that, a 

substance’s real and nominal essences differ [11, p. 186]. 

 

Taking a look at the names of substances in particular, Locke points out that 

common names for substances stand for sorts [11, p. 192]. These common names 

are the signs of the complex ideas of the sort they stand for [11, p. 192]. Following 

this, the essence of a sort is the abstract ideas essential to that sort, which the 

name signifies [11, p. 192]. Locke then explains that this essence, which bounds 

the sorts, is the nominal essence [11, p. 195]. Meaning, these sorts, are nothing 

more than our ranking things (or grouping things) by names that signify the 

complex, abstract, general ideas within us [11, p. 195]. This talk of sorts has been 

mainly to point out that, though we think there are real reasons for why we sort 

things (or group them), the only reasons we have, are the abstract ideas which 

we form through our experiences. 

 

Now that we have an understanding of Lockean ideas and words, we can ask, 

what could be said about these networks from this view? To begin, we will 

suppose that these programs have some form of consciousness, and therefore 

are capable of thinking (though it may be vastly different from our own). We 

want to point out, that we do believe supporting such a position would prove 
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very difficult, especially with the type of networks used in this work. Even 

so, proceeding from here, we will try to formulate a Lockean interpretation of 

these networks, taking the output and our analyses of the programs as 

evidence. 

 

We begin, by noting that, by the very nature of these networks, and our 

programs, they are basing their ’sorts’ on our human abstract ideas, even if only 

initially. We claim this, because we have determined, within the dataset, and the 

possible outputs for each network, what the classes are. Based on these classes, 

the networks are attempting to match the images to the classes which we have 

designated. This would mean, that any abstract ideas formed by the networks, 

have followed the organization of the abstract ideas which we have formed. 

 

Next, we claim that, surely, there are no innate ideas present in these net- 

works. The ideas formed by these networks, come from their experiences, 

which can be further divided into their sensation and reflection. For 

sensation, these networks are taking in input images, and thus experiencing 

them. Additionally, these networks perform calculations, combine 

information, and consider what class an image belongs to, which can be 

considered their reflection. However, we note that an argument could be 

brought against this claim, though we believe it to be nothing more than a 

superficial one. It could be said, that innate ideas are introduced, because we 

are applying fine-tuning (transfer-learning) on the networks. In response to 

this, we claim that, rather than viewing these networks as entirely new ones 

(thus, relating fine-tuning to being born), we should view them as remaining 

one, consistent network. Through this understanding of how fine-tuning is 

working, this work is a case of the networks forming new complex ideas for the 

current (new) experiences. Additionally, the ideas, or knowledge, that come 

from fine-tuning a network, were previously learned through experiences, 

and not innate ideas. As such, we find that the fine-tuning of these networks 

should not truly support the presence of innate ideas in this work. 
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When looking at what these networks output, we should note that the class 

names can be given. As such, these class names signify an internal representation 

for each of the networks. These internal representations can be found in the 

activations, or features, that determine what class a particular instance (input 

image) belongs to. As such, these internal representations, for each class, could 

be said to be the abstract, general ideas that are the nominal essences of the 

classes for the networks. Getting somewhat more technical, we could say that 

the first few layers of the networks could be holding the simpler, if not simple 

ideas. We think this is plausible, as this is where lines, curves, simple shapes, 

colors, and patterns are detected. Closer towards the outputs of these networks, 

their final layers could be said to have the complex ideas which are formed by 

the calculations and combinations of the previous layers’ simpler ideas. Meaning, 

these networks sort of demonstrate the way in which Locke claimed complex 

ideas were formed. Lastly, the outputs of these networks give the names of the 

classes, and therefore, through the combination of complex ideas, and after 

learning how to generalize for each class, these networks have abstract, general 

ideas of each class, signified by the class name. 

 
 

7 Conclusions 
 

In this work, we have found that the two networks used, VGG-16 and DenseNet-

201, are capable of finding patterns that are humanly recognizable when fine- 

tuned on the Stanford Dogs dataset. Though over-fitting was present in both 

networks, we took necessary precautions to prevent and reduce the effects of 

over-fitting, and produced results and analysis to prove that patterns were 

recognized by both networks, even in the presence of over-fitting. With our 

analyses of the response maps (or feature maps) of both networks, we were able 

to find breed specific features. By combining our understanding of both 

networks, and 



35 
 
 

the features, we were able to interpret the networks with respect to Locke’s 

understanding of ideas and words. Finding that, though we do not consider these 

networks to be conscious, the networks themselves, fit well into a Lockean 

understanding. We were able to demonstrate in this work, that internal 

representations were present, the output represented general words, and the 

networks lack innate ideas, learning based on experiences alone. 

For further research, it would be interesting to take a look at how these 

networks would perform on a dataset that had mixed-breed (mutt) dogs. If 

the output of the networks were changed to provide the top four or five classes, 

and confidence values for each, would the networks’ outputs contain the dog 

breeds that constitute the mixed-breed dog? The reason this would be 

interesting to test, is because it would mean that a network trained on a 

specific dataset, for a particular classification task, with few modifications (i.e. 

the output), could possibly perform a task other than its originally intended 

task. The reason we believe this may be possible, is because the main function 

of these networks is to find patterns. If this worked, it would prove that 

patterns had been recognized by the networks, which could be applied to 

multiple tasks. This, of course, is assuming that the characteristics of mixed-

breed dogs is based on a combination of the breeds which constitute it, and 

that these can be seen in an image. 
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